资源类型

期刊论文 314

会议视频 9

会议信息 1

年份

2024 1

2023 17

2022 21

2021 33

2020 21

2019 17

2018 29

2017 18

2016 18

2015 13

2014 11

2013 15

2012 18

2011 10

2010 15

2009 13

2008 19

2007 22

2005 2

2003 2

展开 ︾

关键词

医院中子照射器I型堆 6

绿色化工 5

核能 4

催化剂 3

压水堆 3

碳中和 3

MCNP 2

催化裂化 2

催化裂解 2

先进反应堆 2

医院中子照射器 2

发电 2

技术路线 2

燃耗 2

过程强化 2

高温气冷堆 2

(美国) 核管理委员会 1

ACE格式 1

CECE-GC 1

展开 ︾

检索范围:

排序: 展示方式:

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactorvia the catalytic chemical vapor deposition process

Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 280-289 doi: 10.1007/s11705-017-1635-1

摘要: This article reports the different steps of the design, development and validation of a process for continuous production of carbon nanotubes (CNTs) via catalytic chemical vapor deposition from the laboratory scale to the industrial production. This process is based on a continuous inclined mobile-bed rotating reactor and very active catalysts using methane or ethylene as carbon source. The importance of modeling taking into account the hydrodynamic, physicochemical and physical phenomena that occur during CNT production in the process analysis is emphasized. The impact of this invention on the environment and human health is taken into consideration too.

关键词: carbon nanotubes     catalytic chemical vapor deposition     inclined rotating reactor     industrial process     scaling-up    

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 731-744 doi: 10.1007/s11705-021-2110-6

摘要: Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity. However, its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species. Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency. Here, a two-dimensional MnO2-incorporated ceramic membrane with tunable interspacing, which was obtained via the intercalation of a carbon nanotube, was designed as a catalytic ozonation membrane reactor for degrading methylene blue. Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO2 as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement, an excellent mineralization effect, i.e., 1.2 mg O3(aq) mg–1 TOC removal (a total organic carbon removal rate of 71.5%), was achieved within a hydraulic retention time of 0.045 s of pollutant degradation. Further, the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated. Moreover, the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV) redox pair to electron transfer to generate the reactive oxygen species. This innovative two-dimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.

关键词: catalytic membrane reactor     catalytic ozonation     nanoconfinement     two-dimensional manganese oxide    

Removal of dissolved oxygen from water using a Pd-resin based catalytic reactor

Wenxin SHI, Chongwei CUI, Liye ZHAO, Shuili YU, Xia YUN

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 107-111 doi: 10.1007/s11705-009-0154-0

摘要: The removal of dissolved oxygen (DO) from water was studied experimentally in a Pd-resin base catalyst reactor using purified hydrogen gas as a reducing agent. The effects of various operating conditions, such as hydrogen and water flow rates, height of the catalytic resin bed, temperature, pH value and run time, on the removal of DO, had been studied extensively. The results shows that DO could be removed by the reactor from ppm to ppb levels at ambient temperature. Increases of temperature, H gas rate and the height of the catalytic resin were helpful to improve the DO removal rate. The change of pH value from 4 to 12 resulted in no effect on DO removal. Reaction time was the key factor to control the DO removal efficiency. Only when the reaction time was longer than 2.3 minutes under the experimental conditions, could a very low DO level be achieved.

关键词: dissolved oxygen     palladium     catalytic reactor     hydrogen     resin    

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasmareactor

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-018-1017-z

摘要: In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/ g-Al O catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/ g-Al O catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L , respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/ g-Al O catalyst to effectively decompose O and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/ g-Al O catalyst in plasma significantly decreased the emission of discharge byproducts (NO and O ) and promoted the mineralization of mixed VOCs towards CO . Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

关键词: Mixed VOCs     HSPBD plasma reactor     Degradation     Catalyst     Relative humidity    

面向绿色化工应用的陶瓷催化膜反应器的设计与制备 Feature Article

张广儒, 金万勤, 徐南平

《工程(英文)》 2018年 第4卷 第6期   页码 848-860 doi: 10.1016/j.eng.2017.05.001

摘要:

催化膜反应器将反应和分离耦合在一个单元,在化工生产中被视为一种绿色的化工新工艺。而在催化膜反应器中采用陶瓷膜可以使膜反应器的应用范围扩展到一些苛刻环境。本文介绍了基于气体分离的致密陶瓷催化膜反应器和基于非均相体系分离的多孔陶瓷催化膜反应器,评述了近10 年两种不同种类的膜反应器的最新进展以及本课题组的相关工作。面向能源、环境领域的应用,对膜反应器的设计、制备及应用展开重点讨论。针对各个膜反应器,从膜及膜反应器构型入手,以典型的催化反应为例,对膜反应器的设计及优化进行详细论述,最后探讨了进一步发展所面临的瓶颈和可能取得突破的方向,以及膜与膜反应器未来发展应重点关注的领域。

关键词: 致密膜     多孔膜     催化膜反应器     气体分离     非均相催化    

A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor

Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG

《化学科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 347-356 doi: 10.1007/s11705-013-1347-0

摘要: The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heterogeneous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.

关键词: ventilation air methane     reverse flow reactor     lean methane combustion     logic-based controller     mathematical modeling    

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 4-17 doi: 10.1007/s11705-020-1933-x

摘要: This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid (SCF) conditions. The precious metal catalysts Pd, Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs. This is reportedly due to their favourable catalytic activity during the process including hydrotreating, hydrocracking, and esterification, which leads to improvements in liquid yield, heating value, and pH of the upgraded bio-oil. Due to the costs associated with precious metal catalysts, some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol. On the other hand, SCFs have been effectively used to upgrade crude bio-oil without a catalyst. Supercritical methanol, ethanol, and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis, respectively.

关键词: bio-oil     upgrading     supercritical     review    

Latest research progress for LBE coolant reactor of China initiative accelerator driven system project

《能源前沿(英文)》 2021年 第15卷 第4期   页码 810-831 doi: 10.1007/s11708-021-0760-1

摘要: China’s accelerator driven subcritical system (ADS) development has made significant progress during the past decade. With the successful construction and operation of the international prototype of ADS superconducting proton linac, the lead-based critical/subcritical zero-power facility VENUS-II and the comprehensive thermal-hydraulic and material test facilities for LBE (lead bismuth eutectic) coolant, China is playing a pivotal role in advanced steady-state operations toward the next step, the ADS project. The China initiative Accelerator Driven System (CiADS) is the next facility for China’s ADS program, aimed to bridge the gaps between the ADS experiment and the LBE cooled subcritical reactor. The total power of the CiADS will reach 10 MW. The CiADS engineering design was approved by Chinese government in 2018. Since then, the CiADS project has been fully transferred to the construction application stage. The subcritical reactor is an important part of the whole CiADS project. Currently, a pool-type LBE cooled fast reactor is chosen as the subcritical reactor of the CiADS. Physical and thermal experiments and software development for LBE coolant were conducted simultaneously to support the design and construction of the CiADS LBE-cooled subcritical reactor. Therefore, it is necessary to introduce the efforts made in China in the LBE-cooled fast reactor to provide certain supporting data and reference solutions for further design and development for ADS. Thus, the roadmap of China’s ADS, the development process of the CiADS, the important design of the current CiADS subcritical reactor, and the efforts to build the LBE-cooled fast reactor are presented.

关键词: LBE (lead bismuth eutectic) coolant reactor     China initiative Accelerator Driven System (CiADS) project     research progress    

An old issue and a new challenge for nuclear reactor safety

F. D’AURIA

《能源前沿(英文)》 2021年 第15卷 第4期   页码 854-859 doi: 10.1007/s11708-021-0729-0

摘要: Nuclear reactor safety (NRS) and the branch accident analysis (AA) constitute proven technologies: these are based on, among the other things, long lasting research and operational experience in the area of water cooled nuclear reactors (WCNR). Large break loss of coolant accident (LBLOCA) has been, so far, the orienting scenario within AA and a basis for the design of reactors. An incomplete vision for those technologies during the last few years is as follows: Progress in fundamentals was stagnant, namely in those countries where the WCNR were designed. Weaknesses became evident, noticeably in relation to nuclear fuel under high burn-up. Best estimate plus uncertainty (BEPU) techniques were perfected and available for application. Electronic and informatics systems were in extensive use and their impact in case of accident becomes more and more un-checked (however, quite irrelevant in case of LBLOCA). The time delay between technological discoveries and applications was becoming longer. The present paper deals with the LBLOCA that is inserted into the above context. Key conclusion is that regulations need suitable modification, rather than lowering the importance and the role of LBLOCA. Moreover, strengths of emergency core cooling system (ECCS) and containment need a tight link.

关键词: large break loss of coolant accident (LBLOCA)     nuclear reactor safety (NRS)     licensing perspectives     basis for design of water cooled nuclear reactors (WCNR)    

Impact of roxarsone on the UASB reactor performance and its degradation

Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0871-9

摘要: Impact of continuous ROX addition on performance of UASB reactor was investigated With continuous ROX addition, severe inhibition to methanogenic activity occurred ROX addition caused the changes in the morphology and bacterial diversity of AGS A possible biotransformation pathway of ROX in the UASB reactor was proposed 60%–70% of the arsenic was discharged to the effluent, and 30%–40% was precipitated Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most of the ROX is excreted into the manure, causing arsenic contamination in wastewater. The arsenic compounds are toxic to microorganisms, but the influence of continuous ROX loading on upflow anaerobic sludge blanket (UASB) reactor is still unknown. In this study, the impact of ROX and its degradation products on the performance of the UASB reactor and the degradation and speciation of ROX in the reactor were investigated. The UASB reactor (hydraulic retention time: 1.75 d) was operated using synthetic wastewater supplemented with ROX for a period of 260 days. With continuous ROX addition at 25.0 mg?L , severe inhibition to methanogenic activity occurred after 87 days operation accompanied with an accumulation of volatile fatty acids (VFAs) and a decline in pH. The decrease of added ROX concentration to 13.2 mg?L did not mediate the inhibition. As(III), As(V), MMA(V), DMA(V), HAPA and an unknown arsenic compound were detected in the reactor, and a possible biotransformation pathway of ROX was proposed. Mass balance analysis of arsenic indicated that 60%–70% of the arsenic was discharged into the effluent, and 30%–40% was precipitated in the reactor. The results from this study suggest that we need to pay attention to the stability in the UASB reactors treating organoarsenic-contaminated manure and wastewater, and the effluent and sludge from the reactor to avoid diffusion of arsenic contamination.

关键词: Anaerobic digestion     Anaerobic granular sludge (AGS)     Arsenic species     Impact     Roxarsone (ROX)     UASB reactor    

Nitrogen-retaining property of compost in an aerobic thermophilic composting reactor for the sanitary

Fan BAI, Xiaochang WANG,

《环境科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 228-234 doi: 10.1007/s11783-010-0022-7

摘要: Aerobic composting is a method for the sanitary disposal of human feces as is used in bio-toilet systems. As the products of composting can be utilized as a fertilizer, it would be beneficial if the composting conditions could be more precisely controlled for the retention of fecal nitrogen as long as possible in the compost. In this study, batch experiments were conducted using a closed aerobic thermophilic composting reactor with sawdust as the bulk matrix to simulate the condition of a bio-toilet for the sanitary disposal of human feces. Attention was paid to the characteristics of nitrogen transformation. Under the controlled conditions of temperature at 60°C, moisture content at 60%, and a continuous air supply, more than 70% fecal organic removal was obtained, while merely 17% fecal nitrogen loss was observed over a two-week composting period. The nitrogen loss was found to occur mainly in the first 24 h with the rapid depletion of inorganic nitrogen but with an almost unchanged organic nitrogen content. The fecal NH–N which was the main component of the inorganic nitrogen (>90%) decreased rapidly in the first day, decreased at a slower rate over the following days, and finally disappeared entirely. The depletion of NH–N was accompanied by the accumulation of NH gas in the ammonia absorber connected to the reactor. A mass balance between the exhausted NH gas and the fecal NH–N content in the first 24 hours indicated that the conversion of ammonium into gaseous ammonia was the main reason for nitrogen loss. Thermophilic composting could be considered as a way to keep a high organic nitrogen content in the compost for better utilization as a fertilizer.

关键词: nitrogen retention     composting reactor     human feces     aerobic     thermophilic     fertilizer    

Probing the catalytic activity of M-N

Fan Ge, Qingan Qiao, Xin Chen, You Wu

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1206-1216 doi: 10.1007/s11705-020-2017-7

摘要: In this work, the detailed oxygen reduction reaction (ORR) catalytic performance of M-N O (M= Fe, Co, and Ni; = 1–4) has been explored via the detailed density functional theory method. The results suggest that the formation energy of M-N O shows a good linear relationship with the number of doped O atoms. The adsorption manner of O on M-N O changed from end-on ( = 1 and 2) to side-on ( = 3 and 4), and the adsorption strength gradually increased. Based on the results for binding strength of ORR intermediates and the Gibbs free energy of ORR steps on the studied catalysts, we screened out two highly active ORR catalysts, namely Co-N O and Ni-N O , which possess very small overpotentials of 0.27 and 0.32 V, respectively. Such activities are higher than the precious Pt catalyst. Electronic structure analysis reveals one of the reasons for the higher activity of Co-N O and Ni-N O is that they have small energy gaps and moderate highest occupied molecular orbital energy levels. Furthermore, the results of the density of states reveal that the O doping can improve the electronic structure of the original catalyst to tune the adsorption of the ORR intermediates.

关键词: M-N-C catalyst     oxygen doping     oxygen reduction reaction     catalytic activity     density functional theory    

A new approach for fuel injection into a solar receiver/reactor: Numerical and experimental investigation

M Helal Uddin, Nesrin Ozalp, Jens Heylen, Cedric Ophoff

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 683-696 doi: 10.1007/s11705-018-1782-z

摘要:

An innovative and efficient design of solar receivers/reactors can enhance the production of clean fuels via concentrated solar energy. This study presents a new jet-type burner nozzle for gaseous feedstock injection into a cavity solar receiver inspired from the combustion technology. The nozzle design was adapted from a combustion burner and successfully implemented into a solar receiver and studied the influence of the nozzle design on the fluid mixing and temperature distribution inside the solar receiver using a 7 kW solar simulator and nitrogen as working fluid. Finally, a thorough computational fluid dynamics (CFD) analysis was performed and validated against the experimental results. The CFD results showed a variation of the gas flow pattern and gas mixing after the burner nozzle adaptation, which resulted an intense effect on the heat transfer inside the solar receiver.

关键词: solar reactor     nozzle     CFD     heat transfer     mixing and recirculation    

Advances in the slurry reactor technology of the anthraquinone process for H

Hongbo Li, Bo Zheng, Zhiyong Pan, Baoning Zong, Minghua Qiao

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 124-131 doi: 10.1007/s11705-017-1676-5

摘要: This paper overviews the development of the anthraquinone auto-oxidation (AO) process for the production of hydrogen peroxide in China and abroad. The characteristics and differences between the fixed-bed and fluidized-bed reactors for the AO process are presented. The detailed comparison indicates that the production of hydrogen peroxide with the fluidized-bed reactor has many advantages, such as lower operation cost and catalyst consumption, less anthraquinone degradation, higher catalyst utilization efficiency, and higher hydrogenation efficiency. The key characters of the production technology of hydrogen peroxide based on the fluidized-bed reactor developed by the Research Institute of Petroleum Processing, Sinopec are also disclosed. It is apparent that substituting the fluidized-bed reactor for the fixed-bed reactor is a major direction of breakthrough for the production technology of hydrogen peroxide in China.

关键词: anthraquinone process     fixed-bed reactor     slurry-bed reactor     hydrogen peroxide    

Investigation of fluorescence characterization and electrochemical behavior on the catalysts of nanosized Pt-Rh/γ-Al

Chang-Mao HUNG, Wen-Liang LAI, Jane-Li LIN

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 428-434 doi: 10.1007/s11783-013-0517-0

摘要: This work describes the environmentally friendly technology for oxidation of ammonia (NH ) to form nitrogen at temperatures range from 423K to 673K by selective catalytic oxidation (SCO) over a nanosized Pt-Rh/γ-Al O catalyst prepared by the incipient wetness impregnation method of hexachloroplatinic acid (H PtCl ) and rhodium (III) nitrate (Rh(NO ) ) with γ-Al O in a tubular fixed-bed flow quartz reactor (TFBR). The characterization of catalysts were thoroughly measured using transmission electron microscopy (TEM), three-dimensional excitation-emission fluorescent matrix (EEFM) spectroscopy, UV-Vis absorption, dynamic light-scattering (DLS), zeta potential meter, and cyclic voltammetry (CV). The results demonstrated that at a temperature of 673K and an oxygen content of 4%, approximately 99% of the NH was removed by catalytic oxidation over the nanosized Pt-Rh/γ-Al O catalyst. N was the main product in NH -SCO process. Further, it reveals that the oxidation of NH was proceeds by the over-oxidation of NH into NO, which was conversely reacted with the NH to yield N . Therefore, the application of nanosized Pt-Rh/γ-Al O catalyst can significantly enhance the catalytic activity toward NH oxidation. One fluorescent peak for fresh catalyst was different with that of exhausted catalyst. It indicates that EEFM spectroscopy was proven to be an appropriate and effective method to characterize the Pt clusters in intrinsic emission from nanosized Pt-Rh/γ-Al O catalyst. Results obtained from the CV may explain the significant catalytic activity of the catalysts.

关键词: ammonia (NH3)     nanosized Pt-Rh/γ-Al2O3 catalyst     excitation-emission fluorescent matrix (EEFM)     selective catalytic oxidation (SCO)     tubular fixed-bed reactor (TFBR)    

标题 作者 时间 类型 操作

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactorvia the catalytic chemical vapor deposition process

Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard

期刊论文

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for

期刊论文

Removal of dissolved oxygen from water using a Pd-resin based catalytic reactor

Wenxin SHI, Chongwei CUI, Liye ZHAO, Shuili YU, Xia YUN

期刊论文

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasmareactor

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

期刊论文

面向绿色化工应用的陶瓷催化膜反应器的设计与制备

张广儒, 金万勤, 徐南平

期刊论文

A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor

Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG

期刊论文

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

期刊论文

Latest research progress for LBE coolant reactor of China initiative accelerator driven system project

期刊论文

An old issue and a new challenge for nuclear reactor safety

F. D’AURIA

期刊论文

Impact of roxarsone on the UASB reactor performance and its degradation

Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu

期刊论文

Nitrogen-retaining property of compost in an aerobic thermophilic composting reactor for the sanitary

Fan BAI, Xiaochang WANG,

期刊论文

Probing the catalytic activity of M-N

Fan Ge, Qingan Qiao, Xin Chen, You Wu

期刊论文

A new approach for fuel injection into a solar receiver/reactor: Numerical and experimental investigation

M Helal Uddin, Nesrin Ozalp, Jens Heylen, Cedric Ophoff

期刊论文

Advances in the slurry reactor technology of the anthraquinone process for H

Hongbo Li, Bo Zheng, Zhiyong Pan, Baoning Zong, Minghua Qiao

期刊论文

Investigation of fluorescence characterization and electrochemical behavior on the catalysts of nanosized Pt-Rh/γ-Al

Chang-Mao HUNG, Wen-Liang LAI, Jane-Li LIN

期刊论文